miércoles, 31 de agosto de 2016

Sistemas de representación

Generalidades
En geometría descriptiva, todos los sistemas de representación, tienen como objetivo representar sobre una superficie bidimensional, como es una hoja de papel, los objetos que son tridimensionales en el espacio.

Con este objetivo, se han ideado a lo largo de la historia diferentes sistemas de representación. Pero todos ellos cumplen una condición fundamental, la reversibilidad, es decir, que si bien a partir de un objeto tridimensional, los diferentes sistemas permiten una representación bidimensional de dicho objeto, de igual forma, dada la representación bidimensional, el sistema debe permitir obtener la posición en el espacio de cada uno de los elementos de dicho objeto.

Todos los sistemas, se basan en la proyección de los objetos sobre un plano, que se denomina plano del cuadro o de proyección, mediante los denominados rayos proyectantes. El número de planos de proyección utilizados, la situación relativa de estos respecto al objeto, así como la dirección de los rayos proyectantes, son las características que diferencian a los distintos sistemas de representación.

Sistemas de proyección: En todos los sistemas de representación, la proyección de los objetos sobre el plano del cuadro o de proyección, se realiza mediante los rayos proyectantes, estos son líneas imaginarias, que pasando por los vértices o puntos del objeto, proporcionan en su intersección con el plano del cuadro, la proyección de dicho vértice o punto.


Si el origen de los rayos proyectantes es un punto del infinito, lo que se denomina punto impropio, todos los rayos serán paralelos entre sí, dando lugar a la que se denomina, proyección cilíndrica. Si dichos rayos resultan perpendiculares al plano de proyección estaremos ante la proyección cilíndrica ortogonal, en el caso de resultar oblicuos respecto a dicho plano, estaremos ante la proyección cilíndrica oblicua. Si el origen de los rayos es un punto propio, estaremos ante la proyección central o cónica.





No hay comentarios:

Publicar un comentario